[ | E-mail | Share ]
Contact: Lauren Pearson Riley
pearson@aaos.org
708-227-1773
American Academy of Orthopaedic Surgeons
CHICAGO The Kappa Delta Sorority and the Orthopaedic Research and Education Foundation (OREF) presented four research awards to scientists who are helping to close the gap between basic research and patient treatment and care. Honored at the 2013 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS), these award winners have made recent discoveries in the following areas of musculoskeletal health:
- Bio-enhanced ACL repair
- The diagnosis and treatment of posterolateral (outside and back) corner knee injury
- Skeletal muscle design and the implications for orthopaedic surgery
- The role of mechanical factors in bone healing
The Biology of ACL Injury and Repair
The 2013 Kappa Delta Ann Doner Vaughn Award was presented to Martha M. Murray, MD, of Boston Children's Hospital, for the study, "The Biology of ACL Injury and Repair."
The paper outlines 25 years of research and discovery leading to the novel development of a "bio-enhanced" ACL repair procedure that "stimulates healing and regeneration of the ACL" and minimizes future injury-related osteoarthritis in preclinical models, said Dr. Murray.
First, Dr. Murray's team determined that the premature loss of the provisional scaffold (scar tissue) surrounding the ACL prevents healing. That discovery led them to develop and test various methods to stimulate the healing of these tissues within the ACL wound site. Most promising was the creation and successful implant of a substitute, provisional scaffold that restored functional healing in animal tests. The procedure is far less invasive than current ACL repair surgery.
"This less invasive method has shown promise in preclinical models, where the strength of the repaired ACL is similar to that of an ACL reconstruction at 3 months, 6 months and 1 year," said Dr. Murray. "In addition, the premature osteoarthritis seen in the reconstructed knees was not seen in the knees treated with bio-enhanced repair."
Design of Human Skeletal Muscles: Implications for Orthopaedic Surgery
Richard L. Lieber, PhD, of the University of California, San Diego, received the 2013 Kappa Delta Elizabeth Winston Lanier Award for his research outlining the complex and varying characteristics of skeletal muscles, and the implications of these differences in orthopaedic surgery and patient outcomes.
"Skeletal muscles demonstrate a sophisticated design at a variety of levels," said Lieber. For example, the wrist is "composed of muscles with varying fiber length and fiber which makes some of them very strong, while others can move greater distances."
Lieber and his team developed a portable tool that passes laser light through muscles during surgery, recording a pattern that precisely measures the sarcomere, the microscopic machinery of the muscle. In addition, the researchers documented the unprecedented changes that occur in muscle contractures.
"This tool and concept allows surgeons to move muscles, and to objectively set them to the length at which they will develop the maximum force instead of simply relying on the feel of muscle in the operating room," said Lieber.
When doing a tendon transplant or transfer, "this information can be used to determine the best donors to restore lost function due to injury."
Improving Outcomes for Posterolateral Knee Injuries
Robert LaPrade, MD, PhD, a complex knee surgeon at the Steadman Clinic in Vail, Colo., was awarded the 2013 Orthopaedic Research and Education Foundation (OREF) Clinical Research Award for his work on improving diagnosis and treatment for complex injuries to the posterolateral (back corner) of the knee.
Based on an extensive number of peer reviewed publications on this topic, Dr. LaPrade and his research team developed a set of guidelines and anatomic-based surgical reconstructions that clinicians can use to diagnosis and treat injuries to the posterolateral corner (PLC) of the knee.
Prior to the new research, this part of the knee was "poorly understood," said Dr. LaPrade. "Clinical diagnostic exams were mainly subjective, imaging techniques were not defined, and most surgical reconstruction procedures were not anatomically based or validated. Treatment frequently resulted in recurrent instability and failures," and while posterolateral knee injuries often coincided with cruciate ligament damage, the PLC injuries often were overlooked.
"Proper treatment of grade 3 PLC injuries requires a comprehensive understanding of the anatomy and clinically relevant biomechanics to synthesize the various clinical exams utilized to to diagnose these injuries," said Dr. LaPrade. "The results of our studies have greatly improved the understanding and treatment of what used to be called, 'the dark side of the knee.'"
Control of Bone Healing by Mechanical Factors
Elise Feng-I Morgan, PhD, an associate professor of mechanical engineering, orthopaedic surgery and biomedical engineering at Boston University, received the Kappa Delta Young Investigator Award for her findings on the role of mechanical cues in bone healing.
Dr. Morgan and her team discovered that different manipulations, such as tension versus bending, produced markedly different microenvironments at the site of bone injury. These microenvironments may be linked to the differences in healing that are observed with the different manipulations, and also may be related to differences in gene expression.
These findings indicate the potential for identifying casual links between the mechanics of a skeletal defect and the repair response, as well as the role of imaging and mechanical testing in determining the microenvironment in the bone injury, and consequences for healing. The research may lead to the identification of new molecular targets for enhancing repair.
"Many approaches to studying ways to improve bone healing focus on biological factors: proteins, genes, and cells," said Morgan. "Our research does overlap with these approaches, but we also examine the role of mechanical forces and deformations that the healing tissues experience. These mechanical factors are incredibly potent in affecting healing. Understanding these factors can help in identifying more effective means of treating bone injuries. Also, study of bone healing is a fertile area for determining the capacity of our bodies to regenerate tissues. The ability to control the mechanical cues that cells and tissues experience will be a key part of the future of musculoskeletal tissue regeneration."
###
About the Kappa Delta Awards
In 1947, at its Golden Anniversary, the Kappa Delta Sorority announced the establishment of the Kappa Delta Research Fellowship in Orthopaedics, the first award ever created to honor achievements in the field of orthopaedic research. The first annual award, a single stipend of $1,000, was made available to the Academy in 1949 and presented at the AAOS meeting in 1950. The Kappa Delta Awards have been presented by the Academy to persons who have performed research in orthopaedic surgery that is of high significance and impact.
The sorority has since added two more awards and increased the dollar amount. At present, three annual awards of $20,000 each are given. Two awards are named for the sorority national past presidents who were instrumental in the creation of the awards: Elizabeth Winston Lanier and Ann Doner Vaughn. The third is known as the Young Investigator Award.
The fourth award, also providing $20,000, is the OREF Clinical Research Award. Established in 1995, the award recognizes outstanding clinical research related directly to musculoskeletal disease or injury.
All submitted manuscripts are reviewed, graded, and selected by the American Academy of Orthopaedic Surgeons Research Development Committee, chaired by Peter Amadio, MD. For more information about the manuscript submission process, please visit http://www.aaos.org/kappadelta.
Follow us on Facebook.com/AAOS1 and Twitter.com/AAOS1
A Nation in Motion
More than one in four Americans have bone or joint health problems, making them the greatest cause of lost work days in the U.S. When orthopaedic surgeons restore mobility and reduce pain, they help people get back to work and to independent, productive lives. Orthopaedic surgeons provide a great value, in both human and economic terms; and access to high-quality orthopaedic care keeps this "Nation in Motion." To learn more, to read hundreds of patient stories or to submit your own story, visit ANationinMotion.org.
For more information on bone and joint health, visit Orthoinfo.org
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Lauren Pearson Riley
pearson@aaos.org
708-227-1773
American Academy of Orthopaedic Surgeons
CHICAGO The Kappa Delta Sorority and the Orthopaedic Research and Education Foundation (OREF) presented four research awards to scientists who are helping to close the gap between basic research and patient treatment and care. Honored at the 2013 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS), these award winners have made recent discoveries in the following areas of musculoskeletal health:
- Bio-enhanced ACL repair
- The diagnosis and treatment of posterolateral (outside and back) corner knee injury
- Skeletal muscle design and the implications for orthopaedic surgery
- The role of mechanical factors in bone healing
The Biology of ACL Injury and Repair
The 2013 Kappa Delta Ann Doner Vaughn Award was presented to Martha M. Murray, MD, of Boston Children's Hospital, for the study, "The Biology of ACL Injury and Repair."
The paper outlines 25 years of research and discovery leading to the novel development of a "bio-enhanced" ACL repair procedure that "stimulates healing and regeneration of the ACL" and minimizes future injury-related osteoarthritis in preclinical models, said Dr. Murray.
First, Dr. Murray's team determined that the premature loss of the provisional scaffold (scar tissue) surrounding the ACL prevents healing. That discovery led them to develop and test various methods to stimulate the healing of these tissues within the ACL wound site. Most promising was the creation and successful implant of a substitute, provisional scaffold that restored functional healing in animal tests. The procedure is far less invasive than current ACL repair surgery.
"This less invasive method has shown promise in preclinical models, where the strength of the repaired ACL is similar to that of an ACL reconstruction at 3 months, 6 months and 1 year," said Dr. Murray. "In addition, the premature osteoarthritis seen in the reconstructed knees was not seen in the knees treated with bio-enhanced repair."
Design of Human Skeletal Muscles: Implications for Orthopaedic Surgery
Richard L. Lieber, PhD, of the University of California, San Diego, received the 2013 Kappa Delta Elizabeth Winston Lanier Award for his research outlining the complex and varying characteristics of skeletal muscles, and the implications of these differences in orthopaedic surgery and patient outcomes.
"Skeletal muscles demonstrate a sophisticated design at a variety of levels," said Lieber. For example, the wrist is "composed of muscles with varying fiber length and fiber which makes some of them very strong, while others can move greater distances."
Lieber and his team developed a portable tool that passes laser light through muscles during surgery, recording a pattern that precisely measures the sarcomere, the microscopic machinery of the muscle. In addition, the researchers documented the unprecedented changes that occur in muscle contractures.
"This tool and concept allows surgeons to move muscles, and to objectively set them to the length at which they will develop the maximum force instead of simply relying on the feel of muscle in the operating room," said Lieber.
When doing a tendon transplant or transfer, "this information can be used to determine the best donors to restore lost function due to injury."
Improving Outcomes for Posterolateral Knee Injuries
Robert LaPrade, MD, PhD, a complex knee surgeon at the Steadman Clinic in Vail, Colo., was awarded the 2013 Orthopaedic Research and Education Foundation (OREF) Clinical Research Award for his work on improving diagnosis and treatment for complex injuries to the posterolateral (back corner) of the knee.
Based on an extensive number of peer reviewed publications on this topic, Dr. LaPrade and his research team developed a set of guidelines and anatomic-based surgical reconstructions that clinicians can use to diagnosis and treat injuries to the posterolateral corner (PLC) of the knee.
Prior to the new research, this part of the knee was "poorly understood," said Dr. LaPrade. "Clinical diagnostic exams were mainly subjective, imaging techniques were not defined, and most surgical reconstruction procedures were not anatomically based or validated. Treatment frequently resulted in recurrent instability and failures," and while posterolateral knee injuries often coincided with cruciate ligament damage, the PLC injuries often were overlooked.
"Proper treatment of grade 3 PLC injuries requires a comprehensive understanding of the anatomy and clinically relevant biomechanics to synthesize the various clinical exams utilized to to diagnose these injuries," said Dr. LaPrade. "The results of our studies have greatly improved the understanding and treatment of what used to be called, 'the dark side of the knee.'"
Control of Bone Healing by Mechanical Factors
Elise Feng-I Morgan, PhD, an associate professor of mechanical engineering, orthopaedic surgery and biomedical engineering at Boston University, received the Kappa Delta Young Investigator Award for her findings on the role of mechanical cues in bone healing.
Dr. Morgan and her team discovered that different manipulations, such as tension versus bending, produced markedly different microenvironments at the site of bone injury. These microenvironments may be linked to the differences in healing that are observed with the different manipulations, and also may be related to differences in gene expression.
These findings indicate the potential for identifying casual links between the mechanics of a skeletal defect and the repair response, as well as the role of imaging and mechanical testing in determining the microenvironment in the bone injury, and consequences for healing. The research may lead to the identification of new molecular targets for enhancing repair.
"Many approaches to studying ways to improve bone healing focus on biological factors: proteins, genes, and cells," said Morgan. "Our research does overlap with these approaches, but we also examine the role of mechanical forces and deformations that the healing tissues experience. These mechanical factors are incredibly potent in affecting healing. Understanding these factors can help in identifying more effective means of treating bone injuries. Also, study of bone healing is a fertile area for determining the capacity of our bodies to regenerate tissues. The ability to control the mechanical cues that cells and tissues experience will be a key part of the future of musculoskeletal tissue regeneration."
###
About the Kappa Delta Awards
In 1947, at its Golden Anniversary, the Kappa Delta Sorority announced the establishment of the Kappa Delta Research Fellowship in Orthopaedics, the first award ever created to honor achievements in the field of orthopaedic research. The first annual award, a single stipend of $1,000, was made available to the Academy in 1949 and presented at the AAOS meeting in 1950. The Kappa Delta Awards have been presented by the Academy to persons who have performed research in orthopaedic surgery that is of high significance and impact.
The sorority has since added two more awards and increased the dollar amount. At present, three annual awards of $20,000 each are given. Two awards are named for the sorority national past presidents who were instrumental in the creation of the awards: Elizabeth Winston Lanier and Ann Doner Vaughn. The third is known as the Young Investigator Award.
The fourth award, also providing $20,000, is the OREF Clinical Research Award. Established in 1995, the award recognizes outstanding clinical research related directly to musculoskeletal disease or injury.
All submitted manuscripts are reviewed, graded, and selected by the American Academy of Orthopaedic Surgeons Research Development Committee, chaired by Peter Amadio, MD. For more information about the manuscript submission process, please visit http://www.aaos.org/kappadelta.
Follow us on Facebook.com/AAOS1 and Twitter.com/AAOS1
A Nation in Motion
More than one in four Americans have bone or joint health problems, making them the greatest cause of lost work days in the U.S. When orthopaedic surgeons restore mobility and reduce pain, they help people get back to work and to independent, productive lives. Orthopaedic surgeons provide a great value, in both human and economic terms; and access to high-quality orthopaedic care keeps this "Nation in Motion." To learn more, to read hundreds of patient stories or to submit your own story, visit ANationinMotion.org.
For more information on bone and joint health, visit Orthoinfo.org
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-03/aaoo-aar031813.php
Martha Raddatz Chris Lighty JJ Watt johnny depp jerry sandusky raul ibanez completely wrong
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.